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J. Phys A: Math. Gen. 26 (1993) 2?.%236. Printed in the UK 

On the relaxation processes of the one-dimensional kinetic 
Ising model 

R N h e t h  
Inslitut @r Physik, Univenil5t Mainz, Staudinger Weg 7, Dd500 Mainz, Federal 
Republic of Germany 

Reeved 29 July 1992, in final form 7 October 1592 

AbslraeL We study various relaxation phenomena of lhe general single-spin-flip one- 
dimensional kinetic king model with transition rates w. (u ; )  = $e(l + boi_lu;+l) 

[l - f y , ( u i - l  + u;+t)]. We show that the long-time behaviour can te described by 
an exponential decay (except at some special parameter value.) antra7  to previous 
numexical results. Furthermore we prove that the exponent 3 characterizing the 
disappearance of the excitation @p is not restricted. The case of 6 = 1 is investigated 
in detail. 

1. Introduction 

Kinetic king models are the simplest ones exhibiting non-trivial dynamical behaviour. 
?hey describe an king system in contact with a heat batb. Therefore, the time 
evolution of the model is stochastic and not generated by a Hamiltonian. One possible 
choice for the dynamics, proposed by Glauber (1%3), is a model in which transitions 
between configurations occur due to the flipping of single spins. Glauber solved this 
model exactly for the one-dimensional homogeneous chain with nearest-neighbour 
interactions. He could give a closed expression for the time dependence of various 
observable8 and found that the relaxation is exponential, at least for long times. This 
is the only case so far where the whole spectrum of the time evolution operator has 
been worked out explicitly (Felderhof 1971). (There exists another solution (Deker 
and Haake 1979, Kimball 1979) from which, for example, the dynamical exponent 
can be extracted, but we do not h o w  the whole spectrum in that model.) 

Because of the relative simplicity of the model it seems straightforward to use 
numerical methods to study the dynamics as was done, for example, by Skinner 
(1983), Pandit a a1 (1981), Bauer el al (1988) (see also references therein). Some of 
these authors find that the relaxation of, for example, the autocorrelation function is 
not exponential-suprisingly enough, not even for the exactly known case. Therefore 
the question arises naturally as to whether one can show that, similarly to Glauber’s 
solution, the long-time behaviour is recovered by the exponential decay or whether 
there are special values of the parameters appearing in the transition rates where a 
different type of relaxation occurs. On the other hand the kinetic king model gives a 
good description of the dynamics of some polymer melts (see, e.g., Skinner 1983) and 
even of glassy-like models (Kob and Schilling 1990) where one fads, in experiments 
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and numerical simulations, a stretched exponential behaviour on the intermediate 
time scale and it would be useful to have predictions for longer times as well. 

Both the magnetization and correlation function calculated within the Glauber 
model (Glauber 1963) show non-trivial critical slowing down at T, = 0. The scaling 
theory describes the dependence of the relaxation time 7 on the divergent correlation 
length as T - ti, where i is the dynamical critical exponent. In the following we 
use another variable z instead of Z, which characterizes the disappearance of the 
excitation gap and which will be called the gap exponent The meaning of this 
distinction is that the disappearance of the gap has its origin not necessarily in the 
collective dynamics, as was first emphasized by Achiam and Southern (1992) in a 
somewhat different context. The value of z at different choices of the transition rates 
is not known exactly. Using approximate renormalization group treatment Achiam 
(1978, 1980) obtained z = 2 for all possible transition rates. Cordery er a/ (1981) 
gave physical reasons for arguing that 2 4 z 6 4 and z > 2 can be reached only in 
the limit 6 + 1, T + 0 (6 is the parameter characterizing the different rates). From a 
variational calculation Haake and Tho1 (HT) (1980) obtained lower and upper bounds 
for z :  z = n + 2 for 0 4 n 4 2 and 4 4 I 4 n + 2 for n 2 2. (n characterizes the 
correlation of the two mentioned limiting process-see also equation (IZ).) Numerical 
diagonalization of the time evolution operator (Pandit et a1 1981) identilied the upper 
bound of HT as the exact value. ?b resolve this contradiction we give a better lower 
bound for z and point out the differences bchveen the various definitions of z. We 
show that using the definition of HT, one finds z 2 (n + 1) for 6 = -1 as well, which 
has its origin in the existence of a conserved quantity at 6 = fl and is not connected 
with the special properties of the T, = 0 critical point. The somewhat exotic 6 = 1 
case will be treated in detail. 

2. The time evolution operator 

Consider a linear chain of king spins U, = i1 (n = 1,2,. . . , N) with nearest- 
neighbour interactions. The energy of the spin system can be written as E ( { u , } )  = 
-JC,  u,u,+,, where J denotes the coupling constant For simplicity we assume 
periodic boundary conditions. The master equation then reads 

aP(u,,u, I... ,o,;t) = - C W i ( U i ) P ( U 1 ,  uz, .  . . , ui, .  . . , U N ;  1 )  
i at 

+ ~ w i ( - u i ) P ( u , , u z  ,...) -gi ,..., u N ; t ) .  (1) 
i 

The transition probability wi(u i )  is given by 

wi(ui)  + 6 ~ ; - l ~ + 1 ) [ 1 -  ; Y U ~ ( U ~ - , +  ~i t l ) ]  (2) 

where y = tanh(2J/kBT); -1 4 6 < 1 is a further parameter, which may but need 
not depend on the temperature (the Glauber model is recovered by 6 = 0); a / 2  
characterizes the time scale of the spin flips and we use a = 2. This transition 
probability is the most general one for the one-spin-flip dynamics satisfying the 
detailed balance condition (Glauber 1963). The interpretation of the parameter 6 
is simple: 6 < 0 prefers (compared with the 6 = 0 case) spin flips, which does not 
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alter the energy whereas 6 > 0 prefers energy changing flips. In other words one 
could say that 6 < 0 decreases the probability of domain wall creation and only allows 
their movement, while 6 > 0 means 'defect' creation and annihilation 

The time evolution of a classical stochastic model can be described by a quantum 
model of the same spatial dimension (Kogut 1979). The time evolution (or master) 
operator of this kinetic model can be expressed as (see also Siggia 1977, Kimball 
1979, Peschel and Emery 1981): 

or performing a duality transformation 

Here we introduced new variables T; = U ; U ; + ~ ,  T,"-~T," = 0; (U and T denote 
the Pauli matrices). The factor N in equations (3) and (4) makes the time evolution 
operator positive definite i.e. it leads to relaxation (Haken 1978). The Hamiltonian 
H, at special parameter values becomes simpler: (i) 6 = 0 the z-z coupling 
disappears and H, can be easily diagonalized by introducing lattice fermions; (ii) 
IT,=-, is an isotropic ferromagnetic Heisenberg Hamiltonian, which does not depend 
on the temperature; (iii) only at the 6 = *1 values does the Hamiltonian become 
rotational invariant (around the z axis), which may lead to a vanishing excitation gap 
(see later sections for details). 

The ground state of H,, which is equivalent to the equilibrium state of the original 
Ising model and which has, therefore, the eigenvalue A, = 0, can be constructed in a 
simple way: 

140) = B'ilgi) 19;) = I T)i + 91 l ) i / m  (5 )  

where does not depend 
on 6. This feature is the consequence of the 6-independence of the detailed balance 
condition and consequently of the equilibrium state. 

denotes the direct product and g = ((1 - y ) / ( l  + 

Now we should realize that the following identities hold 

H, =(1+6)H,="-6H,,-l = (1-6)H,,0+6Hs,t. (6) 

Since H,, H,=, and Hs,*l have a common ground state one can conclude that the 
excitation gap A satisfies the following inequalities (see also HT (1980)) 

(1 - I~I)AJ=IJ < A6 < (1 + I~I )A~=IJ  (7) 

for all 6, y values, where As=, = 1 - y is known from the exact solution (Felderhof 
1971). Here it is important to note that the lower and upper bounds can also be 
reached, since H,=*, have gapless continuous spectra. This disappearance of the gap 



232 R Nimelh 

can be easily demonstrated using a spin-wave excitation-like variational wavefunction 
constructed as follows 

This state is orthogonal to the ground state since 

I + k )  is not an eigenstate, but because of its orthogonality to the ground state we get 
an upper bound of the excitation gap 

This is a complicated kdependent expression, but one can easily conclude that: (i) 
Ak becomes zero only at 6 = hl; and (U) the zero value can be reached at k = 0 for 
6 = -1 and at k = ?i for 6 = 1. Unfortunately this simple spin-wave-like excitation 
fails to reproduce the lmown gap value at 6 = 0. 

The reason why the ground state can be explicitly constructed is that the time 
evolution operator of the kinetic modcl involves special correlations among the 
coupling constants and the magnetic field. Similar simplification of the ground state 
for Heisenberg models were realized earlier, for example, by Kunann  et uf (1982) 
and were explained by the existence of the so called disordered lines (RujBn 1982, 
and references therein). In these models the ground state is simple but the excitations 
are not hown at all. 

Concluding this section we can realize from equation (7) that the gap of the time 
evolution operator is always finite for 6 # ? ~ l ,  indicating exponential time decay of 
the original model, at least for Iong times. 

3. The gap q o n e n t  

As already mentioned in the introduction there is some controversy concerning the 
value of the dynamic critical exponent i if the limits T -+ 0 and 6 - 1 are performed 
simultanously. We shall see in this section that the limiting processes T -+ 0 and 
6 -+ -1 show similar peculiarities and that the whole controversy has its origin in the 
definition of i and therefore we shall use z in the following, which is well defined. 

The static correlation length E of the d = 1 Ising model is given by E-' = 
logcoth(J/k,T) and E -+ CO as T -+ 0. Instead of and T we always use y in 
the following and we utilize the relation Y (1 - y)1/2 as y i 1. The simultaneous 
limits 6 + kl and y + 1 will be characterized by the exponent n, which is defined 
through 

1 - 161 = (1 - y)"lz. (12) 



Relaration procases of h e  ID ,kinetic king model 233 

Fbr the sake of completeness we first treat the 161 + 1 case. We saw in the 
previous section that there exist 6dependent lower and upper bounds for the gap: 
( l - l ~ l ) A ~ = ~ < A  <(l+161)A6=,. Sincewe keep(1-161) frniteandAa=o-(l-y) 
we can immediately conclude that z = 2 for these cases. This result was also found 
by all the previously cited authors. 

Let us now pay attention to the different definitions of z: Haake and Tho1 
(BO) ,  Pandit er ul (1981) and Bauer et uf (1988) define z from the gap of the 
master operator, whereas Cordery et ul (1981) investigate only equilibrium quantities 
and their values correspond to Z whereas the other authors calculate z. We argue in 
the following that we have to make a strict distinction between these definitions, as 
they are not directly comparable. We show that the physical picture used by Cordery 
et a2 (1981) is applicable for the non-equilibrium situation as well and leads to the 
same value for z as the one conjectured from the behaviour of the gap of the master 
operator. 

First we take a closer look at the gap. From equation (11) we get for k = 0 and 
for IC = ?r 

= 4-(1+ 6) Ak=* = 4(1 -a). (13) 
From these upper bounds for A one can derive a lower bound for z. Using 
equation (12) one arrives at n < z < (n +2) as 6 -+ 1 and (n + 1) < z < (n + 2) as 
6 --t -1 for all n values. Consequently we can give a better lower bound for z than 
the formerly lmown values (and we can discuss the 6 + f l  cases in the same way), 
which means that z can reach any positive value. The numerical results of Pandit et 
ul (1981) suggest that the upper bound coincides with the exact value. 

On the other hand equation (13) shows that the gap disappears at 6 = f l  
independently of the temperature, which is a simple consequence of the existence of 
conserved quantities. For 6 = -1 the energy stays constant while the corresponding 
observable for 6 = 1, which is a bit more tricky, will be explicitly constructed in the 
next section. 

Now we proceed to show how one can find the time scale leading to the exponent 
z = (n+2). Let us first treat the 6 = -1 case. In the equilibrium state the relaxation 
of, for example, the autocorrelation function can be derived using the physical picture 
of Cordery et a1 (1981). The typical cluster size is proportional to the correlation 
length 5 and the cluster decays through the diffusive motion of the domain wall, since 
the flipping of a spin inside a homogeneous cluster costs too much energy (it takes 
much more time). The time scale of the decay of the cluster is, therefore, determined 
by the number of diffusive steps needed to cross the length 5,  Le. T - c'. It means 
that i = 2. 

Another question is how the equlibrium configuration can be reached from a 
given initial state. The probability of the following transition TTT-Tlt (creation of 
domain walls) is proportional to (1 + 6) ( l  - y)  - tn+'. The other rates are much 
larger in the y + 1 limit and they generate the equilibrium distribution of the walls 
(at a given number) on a relatively short time scale. Consequently, starting from, 
for example, a homogeneous initial configuration the time scale of the domain wall 
creation is proportional to tnt2, which results in z = n + 2. It is clear that this 
long time corresponds to the small gap found earlier and is strongly related to the 
conserved quantity. 

For 6 = 1 the situation is more complicated. Here one needs a two-step process 
to frnd the shortest time scale in equilibrium (Cordery et d 1981), since the defect 
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motion is strongly depressed: tt l l l-TTLt.l-TTTTL. The probability of the first 
process is proportional to (1  - y) and that of the second to 1. Therefore the 
two-step movement happens on a time scale - <'. The length of the cluster is - and it should be crossed by a diffusive particle, therefore we arrive at 7 - t4 
in equilibrium. A similar two-step process works in the non-equilibrium case as 
well: Ttllttll-TtltrTll-Ttrtfrll. The transition rate for the first process is 
proportional to (1  - 6) and for the second one to 1. It means that the typical time 
to annihilate two defects is r - [". On the other hand the wall movement is a much 
faster process and can, at this level, be treated as diffusion. Consequently it takes - EZ steps to create a domain of length <, i.e. 7 - ["+'. This leads immediately to 
the previously conjectured result of z = (n  f 2). 

Concluding this section we gave a new upper bound for the gap of the master 
operator and showed that it can be arbitrarily small. Furthermore we argued applying 
a physically motivated cluster picture that the generation of the equilibrium cluster 
configuration leads to z = ( n  + 2), in agreement with numerical data (Pandit el a1 
1981). Therefore it is important to define different relaxation times for equilibrium 
and for non-equilibrium quantities in the d = 1 kinetic Ising model. These arguments 
show that we can get arbitrary large z values because of the existence of a metastable 
state (which is, for example, a periodic arrangement of two-up and twodown clusters 
for 6 = 1) and the long time scale corresponds to the escape from this metastable 
talle)?. 

4 The 6 = 1 case 

In this section we construct the conserved quantity coupled to 6 = 1 and comment 
on the special properties of other obsembles at t h s  parameter value as well. 

Since the steady creation and annihilation of domain waUs is a more complicated 
process than the motion of defects, a mapping onto the 6 = -1 case will be performed 
first. Introducing new spin variables s % ~ ~  = (-l)[i/z]u4itj, where 1.1 denotes the 
integer part. The description of the dynamic process in terms of these new variables 
is equivalent to the original model. The new transition probabilities are given through 

w;(s;) = (1  - 6si-1sit,)[l - ~ ~ ~ - l ~ ~ s i ~ s i ~ l -  S i + l ) l  (14) 
where we have utilized sisftl = ( - l ) i~ iu i t , .  In this way one can define lattice gas 
variables: ni = [l + ( - l ) ' ~ ~ u ~ + ~ ] / Z .  ni = 1 WReSpondS to a defect in the Ising 
model with the spins s i ,  but its meaning in terms of the uis is more complicated, since 
it depends explicitly on the site, i.e. the translational invariance is lost. One further 
difference compared with the original 6 = -1 model is the temperature dependence 
of the hopping rates. If p i  denotes the transition probability of the particle to the 
correct neighbouring place, then they are given through p i  = [1/2 + (-l)'y/2] and 
p i  f qi = 1 defines the transition probability to the other side. Since the number 
of the lattice gas particles is conserved, one can study the different values separately. 
For the probability P(1, t) that the site 1 at time t is occupied the following equation 
holds 

P ( l , t )  = -P(l , t )  f P , P ( L f  1 3 1 )  + Q , P ( ( -  1 , i )  (15) 
which leads to the well known diffusive motion with temperaturedependent diffusion 
constant. For the two-, three-, etc particle distributions similar equations hold. 
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Now we derive the time dependence of this particle for 6 # 1 and construct a 
quantity which always relaxes exponentially, independently of the system parameters. 
lb this end we start from the master equation for the two spin correlation function 

(16) 
d 
~ ( u i u k )  = - ( u i u k ( ~ b ( g k )  t W i ( u i ) ) )  

(see, for example, the original paper from Glauber). Introducing = 
( - I ) ~ ( o ~ o ~ ) ( ~ )  we can write 

Qi,i+l = -2qi,itlf6(qi-l,i +qi+l, i+z)t ~ ~ ( 1 + 6 ) ( q i , i + z t q j - 1 , i + l ) + ~ ( - l ) ' ( l t 6 )  

Qi,i+2 = -2qi,itz - ZY('  + ' ) ( q i , i + l -  qi+l,i+z + qi , i+3 - qi-1, i+z) 
1 

f s(-l)'((ai-1Qi'Ti+la;+Z) t ( ~ P i + P i + Z U i + 3 ) ) .  (17) 

81 = 4i,i+i = -2(1- 6191 Qz = Qi,i+z = -2Q2. (18) 

Summing over i we arrive at 

i 

It means that the time dependence of Q2 is independent of 6 and of the temperature 
and that 

Concluding this section we note that for 6 = 1, similarly to 6 = -1, a conserved 
quantity exists, which can even be interpreted as a particle number. Furthermore we 
have found a special correlation function Qz, whose time dependence is independent 
of the system parameters and which relaxes exponentially even for zero temeperature. 
This means that Qz should be orthogonal to all low-lying excitations, which might 
give some information about these states. 

= 0 for 6 = 1. 

S. Discussion 

Earlier numerical studies by Skinner (1983), Budemir and Skinner (1985) and Bauer 
et d (1988) found non-exponential decay of the correlation functions of the d = 1 
kinetic king model. These studies used either small systems or were able to treat 
only short times (e.g. Budemir and Skinner used only times where the value of the 
autocorrelation function exceeded 0.1, since otherwise their method was unreliable). 
This means that their stretched exponential decay belongs to this time regime, 
although they argue that this decay could have a relevance for longer times as well. 

We could show, however, that the master operator always has a finite gap for 
6 # fl, which yields exponential relaxation for long times, except for quantities 
which are orthogonal to the ground state. It is not a simple task to find the long 
time behaviour numerically, since, as we saw, the relaxation times increase as the 
limiting values of 6 are approached. On the other hand, it is known (Spohn 1989) 
that the decay of the autocorrelation function for 6 = -1  is non-exponential and 
is asymptotically proportional to exp(-JiT;). Consequently one probably sees a 
continuous transition from exponential to nonexponential decay at a given time scale 
changing 6. A similar calculation for 6 = 1 does not exist at the moment, but an 
analogy with the previous section suggests that a similar relaxation function can be 
found for this case as well. 
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It i!, important to note that the equilibrium state strongly depends on the dynamics 
and if we have 6 = 2 4  then these states can have a completely different structure 
as in the neighbourhood of these Limiting values. It makes somehow the application 
of the temperature-dependent Gibbs measure for 6 = -1 questionable (Spohn 1989) 
and therefore we should define these values as limits which should be performed 
before the long time h i t .  

On the other hand it is important to emphasize again the difference between 
the gap exponent z and the dynamic critical exponent i (Achiam and Southern 
1992). z characterizes the disappearancre of the excitation gap, whereas i appears 
in the scaling relations. As we have explicitly stated the disappearance of the gap 
is connected with the existence of a conserved quantity and has nothing to do with 
collective phenomena. It probably results from the singularity of the amplitude in 
a 7 - A(T)[i-like expressiont. The increase of A(T)  is a completely different 
physical phenomenon &om the increase in 2, although both lead to a vanishing gap. 
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